產品

SurveyMonkey 能滿足各種使用案例和需求。歡迎探索我們的產品,瞭解 SurveyMonkey 能為您提供什麼協助。

使用領先全球的線上調查問卷服務,獲得以資料為導向的深入解析。

探索集合於單一強大平台上的核心功能和進階工具。

建立並自訂線上表單,以收集資訊並接受付款。

可與超過 100 款應用程式和外掛程式整合,讓您事半功倍。

量身打造的解決方案,滿足您所有的市場研究需求。

利用內建的 AI 打造更優質的調查問卷並快速獲得獨到見解。

範本

測量客戶對貴公司的滿意度和忠誠度。

瞭解如何讓客戶滿意,使他們成為您忠實的擁護者。

取得可化為實際行動的深入解析,改善使用者的體驗。

向潛在客戶、受邀人等對象收集聯絡資訊。

輕鬆收集並追蹤下一場活動的邀請回函。

瞭解出席者的期待,使下一場活動更成功。

發掘能提升員工參與度並改善績效的深入解析。

收集出席者的想法和意見,把下一場會議辦得更好。

運用同儕的想法和意見來協助員工提升績效。

打造更好的課程並改善教學方法。

瞭解學生對課程資料和教學狀況的評價。

瞭解客戶對您的新產品構想有何看法。

資源

使用調查問卷和調查資料的最佳實務

有關問卷調查、商務技巧及更多其他內容,都在我們的部落格。

SurveyMonkey 的使用教學與指南。

頂尖品牌如何透過 SurveyMonkey 推動成長。

聯絡銷售人員登入
聯絡銷售人員登入

How SurveyMonkey gets its data

We ask survey questions on an unmatched scale to get high-quality data.

Every day, over 2 million people have conversations using SurveyMonkey.

They’re not just customers, employees, market researchers, or event attendees—people across the world use SurveyMonkey to give feedback on anything you can imagine. We ask just a tiny fraction of those people for their opinion on important issues, and get unprecedented access to a sample of the U.S. population.

That access lets us poll the American public for their views on important current events, while our team of expert survey scientists make sure the sampling of individual units matches the U.S. population at large.

How does SurveyMonkey get its data? We’ll take you through it, step by step.

1. Over 2 million people take surveys on SurveyMonkey’s platform each day.

2 million people

2. A random selection of those people are invited to participate in a survey.

Random selection

3. After they’ve taken the survey, we filter out people who didn’t complete it (nonresponses).

Filtering responses

4. Our survey scientists carefully adjust the data so that it’s representative of the sample population.

Data adjustment

5. What does that mean? When groups in our sample don’t exactly match the larger population, we use advanced statistical inferences to balance them.

Balancing samples

6. Now we start looking at the results. We aggregate and compile responses to provide an easy-to-understand snapshot of what people are thinking.

Compiled responses

7. The large scale of our sample allows us to pinpoint views that others cannot, giving us an inside look on public opinion and experiences.

Pinpoint information

Our team of survey methodologists and pollsters stand behind our data because of three core principles:

Scale and Diversity: During the millions of survey conversations we have each day, we talk to people from a broad range of demographic groups—doctors under 30, construction workers in Maine or Asian American retirees. We have respondents from every:

  • Area of the U.S. (even to state level)
  • Age, gender, ethnicity
  • Background (income, job role, political affiliation)

Known Sampling: Unlike some, we don’t take personal information from our respondents—we ask for it. We collect demographic information on all our respondents, which provides important context for our results. It also allows for more sophisticated weighting of our data, making it even more accurate.

Transparency: It’s our policy to be transparent about our weighting and sampling methods. The details of our survey methodology are open to anyone. Want to see them? Just ask.

Our SurveyMonkey research team runs surveys every day on politics, sports, current events, the media, and whatever else piques our curiosity. We surveyed more than 1 million voters over the course of 2016, and we haven’t really slowed down since—though we have modified our methodology slightly. This page is a resource for anyone interested in our current sample design, questionnaire, weighting methodology, and data availability—read on!

*If you’re interested in our 2016 Election Tracking methodology you can always visit this link.

Over 2 million people take user-generated surveys on the SurveyMonkey platform each day. We select a random sample of these respondents to take part in our research surveys. After completing their initial survey, they see a “thank-you” page inviting them to take an additional survey—those are our research surveys that we conduct in partnership with media outlets and other organizations.

Our sampling process is similar to the way polling has traditionally been done, but updated for the internet age. Instead of randomly drawing respondents from a list of phone numbers, we randomly draw from our diverse base of daily survey takers. We ask our respondents how old they are, whether they are registered to vote, what state they live in, and so on… just as phone polls do.

Our survey-takers come from all 50 states—urban, suburban, rural, and everything in between. Because SurveyMonkey is an online platform, all respondents must have internet access in order to complete our surveys. However, this is becoming less of a limitation as internet penetration increases and as more respondents complete surveys on their cell phones or mobile devices.

SurveyMonkey’s research surveys are in the field continuously; we have respondents completing surveys 24 hours a day, 7 days a week. All surveys are written in English, though we occasionally translate into Spanish as well. We always ask respondents for information on their sex, race/ethnicity, age, state, and education level so that we can use this data to weight our results to be nationally representative.

We routinely include questions on party identification, presidential approval, and respondents’ most important issue so that we can track changes to these questions regularly. If multiple surveys are running at once, we aggregate responses to these questions. There is no risk that any preceding questions on different surveys will influence respondents’ answers because these questions are always asked first.

We have several weighting schemes that we can choose to deploy depending on the sample size and the population of interest for each survey. For each of the weighting schemes outlined below, we use the Census Bureau’s 2015 American Community Survey (ACS) to generate estimates that reflect the most up-to-date demographic composition of the US in terms of age, race, sex, education, and geography. We require all respondents to answer the survey questions used to weight these parameters in each of our surveys.

  1. National general population weighting (default)
    When tabulating national estimates for surveys with fewer than 10,000 respondents, we perform multi-stage raking to construct national weights. We first define state/division geographic units according to state-level population sizes and Census division classification. States with more than five million residents are defined as stand-alone units, while smaller states are grouped together within a Census division to form secondary geographic units. At the first stage of raking, the sample is weighted to adult population sizes of state/division geographic units to generate initial weights. The second stage of raking adjusts the initial weights by gender, age, race, and education within each Census region to match targets obtained from the ACS.
  2. National general population weighting — large samples
    When a national survey has more than 10,000 respondents, we perform multi-stage raking to construct national weights. At the first stage of raking, the sample is weighted to adult population sizes of 50 states plus the District of Columbia to generate initial weights. The second stage of raking adjusts the initial weights by gender, age, race, and education within each Census region to match ACS targets.
  3. State-level weighting
    For surveys that focus on one particular state, such as the our surveys just prior to the special elections in Alabama, Virginia, and New Jersey in 2017, we employ raking to construct state-level weights. We first classify postal zip codes into five groups according to their population sizes. We derive initial respondent weights from estimated sampling rates on the SurveyMonkey News “thank-you” page within each zip code group. We then rake the initial respondent weights by gender, age, race, and education within the state to match targets obtained from the ACS.
  4. Region-level weighting
    For surveys that focus on a region of the United States, such as our southern states polling for NBC, we employ multi-stage raking to construct region-level weights. We first define state/division geographic units according to state population sizes and Census division classification within the sampled region. States with more than five million residents are defined as stand-alone units, while smaller states are grouped together within a Census division to form secondary geographic units. We then classify postal zip codes into five groups according to their population sizes within each geographic unit. We derive initial respondent weights from estimated sampling rates on the SurveyMonkey “thank-you” page within each zip code group. At the first stage of raking, the initial weights are controlled to geographic unit population sizes. The second-stage raking adjusts first-stage weights by gender, age, race, and education to match ACS targets for the geographic unit.

Surveys that use probability-based designs can calculate and report a margin of error estimate for each statistic they produce. You’ll often see language such as “this poll has a margin of error of +/-3.5 percentage points,” which means that if the difference between two estimates is within the margin of error, we can’t tell with confidence which one is greater.

SurveyMonkey research surveys do not have a probability-based design, because there is no well-defined sampling frame of respondents to SurveyMonkey surveys. Therefore, to avoid confusion, we do not report a margin of error term. Instead, we utilize a “modeled error estimate” which is calculated using a bootstrap confidence interval. According to the American Association for Public Opinion Research (AAPOR), this method is a best practice for non-probability surveys, as it “approximates the variance of a survey estimator by the variability of that estimator computed from a series of subsamples taken from the survey data set.”

Here’s an example of our typical methodology summary:

This SurveyMonkey online poll was conducted Jan. 5-6, 2017 among a national sample of 1,725 adults ages 18 and up. Respondents for this survey were selected from the nearly 3 million people who take surveys on the SurveyMonkey platform each day. Data for this week have been weighted for age, race, sex, education, and geography using the Census Bureau’s American Community Survey to reflect the demographic composition of the United States. The modeled error estimate for this survey is plus or minus 3.5 percentage points. For full topline results, see here.

Here, the modeled error estimate of plus or minus 3.5 percentage points has the same interpretation as the margin of error example above. In every blog post or report, we’ll always include the dates during which the survey was in the field, the total number of respondents, a brief description of our weighting methodology, and the modeled error estimate for the survey.

Note: Because we are an online survey organization, people often assume that our research surveys are administered to a non-probability panel. This is incorrect. While SurveyMonkey does maintain a panel of respondents to make available to customers, we seldom employ this panel for respondent recruitment. Our methodology statement will always indicate the way we obtained our sample of respondents and weighted our results.

If you’d like to keep up with our ongoing insights, here are a few ways to do that:

Trump approval: Every Friday we publish a week’s worth of data on President Trump’s approval rating. View the archive here.

Consumer confidence: We publish an index of consumer confidence based on questions about individuals’ current financial health and their expectations for the future. View the archive here.

Small business confidence: Every quarter, in partnership with CNBC, we ask small business owners about the current small business environment and their expectations for the future. View the archive here.

Partners: We have more partnerships now than ever before. Check out recent results published by NBC News, Axios, FiveThirtyEight, The New York Times, ESPN, Vanity Fair’s Hive & theSkimm, OZY and CNBC.

SurveyMonkey Audience is a separate tool with a different method for recruiting respondents. In Audience, respondents take surveys in exchange for donations to charity and customers can pay to hear their opinions. The polling method described on this page isn’t available for purchase. It’s the perfect tool to use to get research for concept testing, content marketing, and more.

SurveyMonkey employs a team of survey methodologists—scientists who study surveys, polling, public opinion, and data collection. They know exactly how to structure surveys, ask questions, and analyze data in order to get precise results.

Dizüstü bilgisayarda anket hazırlayan kızıl saçlı kadın

探索我們專為特定角色或產業設計的眾多工具組,幫助您善加利用意見回饋。

Dizüstü bilgisayarlarında bir makaleye bakan ve yapışkanlı not kağıtlarına bazı bilgiler yazan bir kadın ve bir adam

在離職面談中詢問合適的問題,以減少員工流失。立即開始使用我們的員工表單建立器工具和範本。

Dizüstü bilgisayarına bakarak gülümseyen gözlüklü adam

透過自訂同意表單,取得所需的權限。立即免費註冊,開始使用我們的同意表單範本建立表單。

Dizüstü bilgisayarındaki bilgileri inceleyen kadın

輕鬆建立和自訂專屬的請求表單,以收集員工、客戶及其他對象的要求或申請。使用專家建立的範本,幾分鐘就能完成。