產品

SurveyMonkey 能滿足各種使用案例和需求。歡迎探索我們的產品,瞭解 SurveyMonkey 能為您提供什麼協助。

使用領先全球的線上調查問卷服務,獲得以資料為導向的深入解析。

探索集合於單一強大平台上的核心功能和進階工具。

建立並自訂線上表單,以收集資訊並接受付款。

可與超過 100 款應用程式和外掛程式整合,讓您事半功倍。

量身打造的解決方案,滿足您所有的市場研究需求。

利用內建的 AI 打造更優質的調查問卷並快速獲得獨到見解。

範本

測量客戶對貴公司的滿意度和忠誠度。

瞭解如何讓客戶滿意,使他們成為您忠實的擁護者。

取得可化為實際行動的深入解析,改善使用者的體驗。

向潛在客戶、受邀人等對象收集聯絡資訊。

輕鬆收集並追蹤下一場活動的邀請回函。

瞭解出席者的期待,使下一場活動更成功。

發掘能提升員工參與度並改善績效的深入解析。

收集出席者的想法和意見,把下一場會議辦得更好。

運用同儕的想法和意見來協助員工提升績效。

打造更好的課程並改善教學方法。

瞭解學生對課程資料和教學狀況的評價。

瞭解客戶對您的新產品構想有何看法。

資源

使用調查問卷和調查資料的最佳實務

有關問卷調查、商務技巧及更多其他內容,都在我們的部落格。

SurveyMonkey 的使用教學與指南。

頂尖品牌如何透過 SurveyMonkey 推動成長。

聯絡銷售人員登入
聯絡銷售人員登入

Types of quantitative research

You need quantitative research data, conducted on a statistically significant sample to get the most informative results for your business.

You may already use quantitative research, or you may be new to this research type. Join us as we explore quantitative research, how to use it, and the best ways to collect quantitative data.

Research in which collected data is converted into numbers or numerical data is quantitative research. It is widely used in surveys, demographic studies, census information, marketing, and other studies that use numerical data to analyze results. 

Primary quantitative research yields results that are objective, statistical, and unbiased. These results are often used as benchmarks. 

Distinguishing features of quantitative research:

  • Data is numerical
  • Analysis is from a statistical perspective
  • Conducted on a statistically significant sample size that is representative of the target market
  • Uses structured tools, such as surveys, to gather data
  • Uses closed-ended questions focused on the end goal of the research
  • Can provide generalized results that represent an entire population
  • Can be used to find patterns and averages
  • Can be used to make predictions
  • Can test causal relationships

As we just described, quantitative research collects numerical data. It is statistical and structured, and its results are objective and conclusive.

Qualitative research collects non-numerical data to gain insights. It is performed with the goal of gaining a deeper understanding of a topic, issue, or problem from an individual perspective. Data is meant to describe rather than predict. Information is gathered through focus groups, observation, and open-ended survey questions.

Qualitative research data is not numerical. Because of its exploratory nature, answers are descriptive text or statements rather than choices from a structured answer set. This makes qualitative research more time-consuming to analyze than quantitative research, though it is equally valuable in a well-structured survey.

Refer to this article for further information about the difference between quantitative and qualitative research.

There are several advantages to quantitative research. Some of the most salient advantages are:

  • Reliable data: data collected in quantitative research is reliable and accurate because it is collected, analyzed, and presented in numerical form. 
  • Study can be replicated: standardized collection allows the study to be performed again to directly compare results.
  • Fast and easy collection of data: quantitative research data can be collected quickly and the process of conducting a survey with the quantitative research method is straightforward and less time-consuming than qualitative research.
  • Wider scope of data analysis: quantitative research provides a wider scope of analysis with the use of statistics.
  • Eliminates bias: there is no scope for personal opinions or biasing of results in the numerical data. 
  • Less interpretation of results: accept or reject your hypothesis based on numerical data.

No research method is perfect. These are some of the main limitations of quantitative research:

  • Superficial representation: complex concepts such as feelings and opinions cannot be expressed
  • Data can be over-manipulated: missing data, imprecise measurements, or inappropriate sampling are biases that can lead to inaccurate conclusions
  • Difficult to analyze without a tool: statistical analysis can be challenging to perform without statistics knowledge and experience or a tool that performs statistical analysis

Quantitative research methods are used for descriptive, correlational, causal-comparative, and experimental research. Let’s take a closer look at each type.

This type of quantitative research is used to explain the current state of a variable or topic. It can answer what, where, when, and how, but not why questions (those are answered in qualitative research). The researcher does not control or manipulate the variables. They just observe and measure them.

Surveys are often used to gather a large amount of data that can be analyzed for frequencies, averages, and patterns. For example, surveys can be used to describe the demographics of a given region, gauge public opinion on political topics, and evaluate customer satisfaction with a company’s products.

Observations are often used to gather data without relying on survey respondents' honesty or accuracy. This method of descriptive research is used to understand how individuals act in real-life situations.

Case studies can also be used to gather detailed information to identify characteristics of a narrowly defined subject. They are frequently used to generate hypotheses and theories.

Goal

The goal of descriptive research is to understand the current status of an identified variable. 

When to Use

Descriptive research is used to identify categories and trends, form hypotheses, arrange comparisons, confirm existing phenomena, and outline sample characteristics.

The following are examples of descriptive research:

  • An athletic shoe brand conducts a demographic survey to understand the shoe purchasing trends among customers in New York.
  • Find out where young adults aged 16-20 get their online news with a survey listing popular news sites.
  • Discover how often working people take vacations by sending surveys asking how many vacations the target population has taken in the last year.

The correlational research method examines the relationships between different subjects and variables without the researcher controlling or manipulating any of them. It is focused on relationships between fixed variables. Correlational research relies on the scientific method and hypotheses.

Surveys are fast, easy ways to measure your variables of interest. It’s essential to ensure that your questions are formulated correctly and your questions are free of bias. Our question bank is very useful in helping you design your survey questions.

Naturalistic observation allows you to gather data about a behavior or phenomenon in its natural environment. This may include measuring frequencies, durations, scales, and amounts.

Secondary data is a fast, inexpensive way to conduct correlational research. However, the data may not be reliable or not entirely relevant to your study—and you have no control over it.

Goal

The goal of correlational research is to identify variables that have some sort of relationship to the extent that one creates a change in the other. 

When to Use

Correlational research is used to gather data quickly from natural settings so you can generalize findings to a real-life situation.

The following are examples of correlational research:

  • Find out if there is a relationship between Facebook shares of your website link and a higher Google ranking.
  • Discover if there is a correlation between gender and class participation in college classes by observing seminars, tracking the frequency and duration of students’ contributions, and categorizing them by gender.
  • Find out if videos on your website improve dwell time and increase conversions.

The causal-comparative research method is used to identify a cause and effect relationship between two variables, where one variable is dependent and another is independent. It has aspects in common with experimentation but cannot be considered a true experiment.

There are three main types of quasi-experimental research designs:

Nonequivalent groups: groups are similar, but only one experiences treatment or variable

Regression discontinuity: researchers assign an arbitrary cutoff in the list of participants. Those above the cutoff receive treatment or variable and those below do not. The individuals just below the threshold are used as a control group because they are so near the threshold.

Natural experiments: an external event or situation (nature) results in the random assignment of subjects to the variable recipient group. These experiments are observational and are not considered true experiments.

Goal

The goal of causal-comparative research is to identify how different groups are affected by the same circumstance.

When to Use

Causal-comparative/quasi-experimental research is often used when experimental research is deemed infeasible, unethical, or prohibited.