產品

SurveyMonkey 能滿足各種使用案例和需求。歡迎探索我們的產品,瞭解 SurveyMonkey 能為您提供什麼協助。

使用領先全球的線上調查問卷服務,獲得以資料為導向的深入解析。

探索集合於單一強大平台上的核心功能和進階工具。

建立並自訂線上表單,以收集資訊並接受付款。

可與超過 100 款應用程式和外掛程式整合,讓您事半功倍。

量身打造的解決方案,滿足您所有的市場研究需求。

利用內建的 AI 打造更優質的調查問卷並快速獲得獨到見解。

範本

測量客戶對貴公司的滿意度和忠誠度。

瞭解如何讓客戶滿意,使他們成為您忠實的擁護者。

取得可化為實際行動的深入解析,改善使用者的體驗。

向潛在客戶、受邀人等對象收集聯絡資訊。

輕鬆收集並追蹤下一場活動的邀請回函。

瞭解出席者的期待,使下一場活動更成功。

發掘能提升員工參與度並改善績效的深入解析。

收集出席者的想法和意見,把下一場會議辦得更好。

運用同儕的想法和意見來協助員工提升績效。

打造更好的課程並改善教學方法。

瞭解學生對課程資料和教學狀況的評價。

瞭解客戶對您的新產品構想有何看法。

資源

使用調查問卷和調查資料的最佳實務

有關問卷調查、商務技巧及更多其他內容,都在我們的部落格。

SurveyMonkey 的使用教學與指南。

頂尖品牌如何透過 SurveyMonkey 推動成長。

聯絡銷售人員登入
聯絡銷售人員登入

What is choice modeling?

Choice modeling offers real data from your target market, and SurveyMonkey can set you up for success.

Your customers can tell you what they like and what they’ll buy, but they can’t always explain why they choose one brand over another. Unless they are marketers themselves, they may not fully understand the role of price, brand image, packaging, brand name, promotions, and advertising in their decision to purchase. 

Choice modeling, a type of preference structure modeling, is a powerful tool for understanding what drives customer interest and purchase decisions. It’s considered to be the most scientifically robust way to discover and understand how customers make choices.

Let’s take a closer look at choice modeling and how it can fit into your marketing strategy. 

Choice modeling is an analytical method that is used to simulate consumer shopping behavior.

Research participants are unaware of what is being measured as they are presented with visual choices with marketing variables such as advertising, pricing, packaging, features, etc. Participants are asked to make trade-offs among the provided options, ultimately choosing what they value most from those options.

Inferences drawn from participant decisions are used to predict the likelihood of a customer choosing one product or feature over another.

The data provides deeper insights into what is important to your target market, allowing you to make insightful, data-driven business decisions for various dilemmas, including:

  • Price setting for profitability
  • Bundling features
  • Product positioning
  • Viability of a concept
  • Media effectiveness
  • Promotions
  • Advertising messages
  • Packaging

The most significant advantage of choice modeling is that it provides deeper insight into your target market’s values. Other advantages include:

  • Respondents must consider trade-offs between attributes revealing the most valued attributes
  • Definitive frame of reference through a predetermined array of attributes and alternatives
  • Enables prices to be estimated for each attribute by assigning value
  • Identify an optimal mix of features to create a product your target market would deem valuable and the price they are willing to pay
  • Can be used in most cases for a hard estimate of current and future preferences

As with any research method, there are limitations to be considered. These limitations include:

  • Discrete choices only provide ordinal data
  • A large amount of data is required to assure statistical significance
  • Cost and time may be higher than other methods

Choice modeling says that individuals make decisions based on weighing the utility of each alternative—choosing the option with the highest utility. This is accomplished using the logistic statistical model to determine the probability of future events.

There are three main steps to choice modeling:

  1. Identify your product’s key factors: This is most effectively accomplished via focus groups. You can explore consumer buying motivations and impressions of your product or service with a trained facilitator. With that information, you can develop hypotheses about the key factors that influence their choices.
  2. Test your hypotheses: In this step, you’ll use surveys in one of two ways. First, for existing products, you can survey your target market to find out what they usually buy or have purchased in the past in your product category. 

The second option is to present survey participants with a set of choice experiments. Each experiment presents a hypothetical marketplace that contains a set of products. The products are described, and the participants are asked what they would do in terms of purchasing—buy a product, not buy anything, or buy later. Additional experiments vary pricing and other product characteristics, and participants make choices each time based on the new information.

  1. Statistical analysis: Analyze your collected data to draw inferences, identify trends, and generate insights about what your target market values most.

There are four main types of choice modeling analysis. The type you use depends on your technological knowledge and what type of data and insights you are seeking.

R is a free, open-source programming language created by statisticians for working with data. R-Language is frequently used to analyze large datasets with complex variables. R can handle both discrete (nominal or ordinal) and probabilistic variables. It runs on a wide variety of UNIX platforms, Windows, and Mac OS. R can be used for statistical analysis and visualization of your SurveyMonkey data. R is known for being difficult to learn for those with limited experience in programming.

Another type of choice modeling is conjoint analysis, also known as trade-off analysis. Conjoint analysis is based on the concept that any offering from a company can be broken down into a set of attributes that impact a customer’s perceived value of the offering.

Use conjoint analysis to determine the most influential attributes on a survey participant’s decision to purchase. 

Your survey structure for conjoint analysis should ask participants to rank the importance of specific attributes or to choose between different combinations of features and prices. 

Sample conjoint exercise

During analysis, a value is assigned to each attribute. The data can then be used to decide the combination of features that will be most attractive to customers and at what price they are willing to make a purchase.

Yet another method of determining the probability that a consumer will choose a particular alternative is discrete choice modeling. This is best for product categories that see one purchase used over a long period of time or products that have many features, such as smartphones.

In discrete choice modeling, both current and potential customers are asked to view a realistic scenario that includes all of the competing products in the marketplace. They are then presented with varying combinations of marketing strategies and asked which product they would purchase based on that marketing. 

Volumetric choice modeling is common for businesses in product categories that experience multiple product purchases in short amounts of time and where repeat purchase volume is important. In this type of modeling, current and potential customers are provided with a realistic shopping scenario that includes all of the competing products in the particular marketplace. They are asked to indicate how many of each product they would buy. This reveals the role and importance of marketing variables in a situation where varying quantities of multiple brands can be purchased.

Choice modeling effectively determines what’s important to your customers and potential customers when making purchase decisions. Start using choice modeling today to test product features for implicit value, the effectiveness of marketing campaigns, set pricing structures, and more. 

SurveyMonkey has a variety of market research services available, including product optimization, price sensitivity analysis, and survey design. Explore all of our market research solutions to optimize your marketing campaigns and brand success.

To read more market research resources, visit our Sitemap.