產品

SurveyMonkey 能滿足各種使用案例和需求。歡迎探索我們的產品,瞭解 SurveyMonkey 能為您提供什麼協助。

使用領先全球的線上調查問卷服務,獲得以資料為導向的深入解析。

探索集合於單一強大平台上的核心功能和進階工具。

建立並自訂線上表單,以收集資訊並接受付款。

可與超過 100 款應用程式和外掛程式整合,讓您事半功倍。

量身打造的解決方案,滿足您所有的市場研究需求。

利用內建的 AI 打造更優質的調查問卷並快速獲得獨到見解。

範本

測量客戶對貴公司的滿意度和忠誠度。

瞭解如何讓客戶滿意,使他們成為您忠實的擁護者。

取得可化為實際行動的深入解析,改善使用者的體驗。

向潛在客戶、受邀人等對象收集聯絡資訊。

輕鬆收集並追蹤下一場活動的邀請回函。

瞭解出席者的期待,使下一場活動更成功。

發掘能提升員工參與度並改善績效的深入解析。

收集出席者的想法和意見,把下一場會議辦得更好。

運用同儕的想法和意見來協助員工提升績效。

打造更好的課程並改善教學方法。

瞭解學生對課程資料和教學狀況的評價。

瞭解客戶對您的新產品構想有何看法。

資源

使用調查問卷和調查資料的最佳實務

有關問卷調查、商務技巧及更多其他內容,都在我們的部落格。

SurveyMonkey 的使用教學與指南。

頂尖品牌如何透過 SurveyMonkey 推動成長。

聯絡銷售人員登入
聯絡銷售人員登入

3 Natural Language Processing use cases for analyzing survey responses

Say you ran a survey and collected responses from 1,000 individuals.

You’ve included two open-ended questions in your survey and all 1,000 of your respondents answered them, using 15 words each.

Using simple arithmetic, you’ll find that you’ve collected 2,000 open-ended responses (2 * 1,000) that totaled 30,000 words (2,000 * 15).

With such a daunting amount of text to read, how can you reasonably expect to review and identify the key insights from your responses?

The answer to both of these questions involves the use of Natural Language Processing, often referred to as NLP, which is essentially the process of using computers to help understand large amounts of text data.

Throughout this page, we’ll provide an introduction to Natural Language Processing and discuss how to use it to help review your survey results. By the end, you’ll have an idea of how to use Natural Language Processing in your future surveys.

Natural Language Processing is a field where computer programming and machine learning techniques attempt to understand and make use of large volumes of text data.

Natural Language Processing offers hundreds of ways to review your open-ended survey responses. Unfortunately, you don’t have the time to review each of these applications and decide on the best one.

We’ll fast-track your review process by walking you through 3 of the most popular Natural Language Processing use cases.

The word cloud allows you to identify the relative frequency of different keywords using an easily digestible visual.

For example, in a previous study, we’ve asked Americans to describe millennials in a single word. Their responses led to the following word cloud:

The bigger words in the chart appear more often in responses relative to the other words. In this case, these words tend to be negative—e.g. “lazy” and “spoiled.”

Now that you know how it works, you might be asking yourself, “How do word clouds help my survey analysis?”

Here are some of its key benefits:

  • It’s intuitive and easy to comprehend
  • It helps identify overall respondent sentiment and the specific factors that drive it
  • It provides direction for further analysis

But here are some of its drawbacks to consider:

  • It fails to measure each word’s value in and of itself
  • It allows irrelevant words to appear
  • When words appear similar in size, it becomes difficult to differentiate them

TFIDF focuses on how unique a word or a group of words are from a set of responses. It’s calculated as follows:

The closer the number is to 1, the more important the word becomes. What’s the reasoning behind this formula? If more people say something but don’t necessarily say it frequently, it’s easily neglected or missed—despite its value to your analysis. TFIDF solves this challenge by highlighting the most important unique words or group of words.

For example, let’s say we gathered responses from the question: “If you had $1,000 and you could save it, invest it, or use it to pay off bills, what would you do with it?”

We end up finding that many young adults would spend the money on school-related expenses as words like, “tuition” and “buying textbooks” have a high TFIDF rating.

Use TFIDF when you want to…

  • Drill down on the unique words that are used by a large sample of respondents
  • Identify a theme to focus on
  • Easily compare the relevance of a word or a group of words to others

Just keep the following pitfalls in mind…

  • The voices of a few respondents can get buried and neglected
  • If many respondents say something, but say it often, that word or group of words can receive a score that isn’t representative of its significance
  • When something is said by only a few respondents, infrequently, that word or group of words can receive a score that overstates its importance

Topic modeling is an advanced natural language processing technique that involves using algorithms to identify the main themes or ideas (topics) in a large amount of text data. Topic modeling algorithms examine text to look for clusters of similar words and then group them based on the statistics of how often the words appear and what the balance of topics is.

As a result, topic modeling helps you understand the key themes from your survey responses as well as the relative importance of each theme.

Let’s say we asked respondents whether or not they like swimming. We followed up with an open-ended question where the respondent can explain their answer. Our topic model produces the following chart, based on the clusters of similar words that appear in the open-ended responses.

Eight main topics emerge, based on the frequency of word clusters that appeared in our open-ended responses. Since we used a 95% confidence interval, there’s some variability in the weight of each topic, which the lines on either side of the topic represent.

As you can see, the topic clusters that appear for respondents who said they don’t like swimming are negative, while the ones who said they like swimming are positive. In our example above, “exhausting” was the most relevant topic when respondents disliked swimming. Meanwhile, “fun” was the most applicable topic when respondents said they liked swimming.

  • Identifies key topics that drive the respondent’s sentiment in a certain direction
  • Helps you understand each topic’s level of influence
  • Produces an intuitive and easy to understand visual

Here are some of its shortcomings:

  • Doesn’t account for the significance of each topic in and of itself
  • The survey creator specifies the number of topics they’d like to have in advance. This easily leads to human error; choosing an excessive number of topics creates less valuable ones while choosing an insufficient number leaves out potentially important topics
  • Becomes overwhelming and less meaningful if too many key topics are chosen

Deciding on the right application of Natural Language Processing isn’t simple. But choosing between these 3 use cases makes the process much easier. So go forward and embrace your free responses with confidence. You’ll uncover any and all of the key insights they provide.

工具組目錄

探索我們專為特定角色或產業設計的眾多工具組,幫助您善加利用意見回饋。

建立員工離職面談表單,以瞭解有哪些應改善之處

在離職面談中詢問合適的問題,以減少員工流失。立即開始使用我們的員工表單建立器工具和範本。

利用線上同意表單取得必要權限

透過自訂同意表單,取得所需的權限。立即免費註冊,開始使用我們的同意表單範本建立表單。

螢幕擷取畫面上呈現 SurveyMonkey 線上請求表單

輕鬆建立和自訂專屬的請求表單,以收集員工、客戶及其他對象的要求或申請。使用專家建立的範本,幾分鐘就能完成。